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SUMMARY

An implicit multigrid-driven algorithm for two-dimensional incompressible laminar viscous �ows has
been coupled with a solution adaptation method and a mesh movement method for boundary movement.
Time-dependent calculations are performed implicitly by regarding each time step as a steady-state
problem in pseudo-time. The method of arti�cial compressibility is used to solve the �ow equations.
The solution mesh adaptation method performs local mesh re�nement using an incremental Delaunay
algorithm and mesh coarsening by means of edge collapse. Mesh movement is achieved by modeling
the computational domain as an elastic solid and solving the equilibrium equations for the stress �eld.
The solution adaptation method has been validated by comparison with experimental results and other
computational results for low Reynolds number �ow over a shedding circular cylinder. Preliminary
validation of the mesh movement method has been demonstrated by a comparison with experimental
results of an oscillating airfoil and with computational results for an oscillating cylinder. Copyright
? 2005 John Wiley & Sons, Ltd.
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INTRODUCTION

Time-dependent phenomena are important in a variety of compressible and incompressible
�ows. Examples include free surface �ows, turbulent �ows, unsteady wake �ows, and time-
dependent geometries such as helicopter rotor blades, compressor and turbine blades, as well
as �ows with objects in relative motion such as the store separation problem. Accurate and
e�cient numerical simulation of these types of problems will typically involve the combination
of a fast and e�cient �ow solver, solution adaptation, and a mesh movement algorithm for
the moving boundaries.
For the calculation of time-dependent �ows, implicit methods o�er the advantage over

explicit methods of allowing the size of the time step be dictated by the physics of the
�ow rather than by stability considerations. Jameson [1] proposed a fast and e�cient way
to calculate time-dependent �ows using a multigrid-driven dual time stepping scheme. This
method was improved by Melson et al. [2] and has been used successfully in the study of
aeroelastic problems [3], low Reynolds number wake �ows [4], for the calculation of free
surface �ows with plunging breakers [5], and for the calculation of high speed compressible
�ows [6]. This method has also been applied to both structured meshes [1–4] and unstructured
meshes [5–9].
In a true incompressible �ow the acoustic speed is in�nite. The disparity in the acoustic

and convective wave speeds makes the system of equations ill-conditioned. A preconditioning
matrix can be introduced to reduce this disparity in the wave speeds. Chorin [10] proposed
the method of arti�cial compressibility for steady state problems, which was later modi�ed
to treat time-dependent problems [11–13]. This arti�cial compressibility approach has also
been used successfully with Jameson’s implicit multigrid-driven dual time stepping method
[4, 5, 8].
For many �ow problems, there tends to be a large disparity in length scales which leads

to meshes with a comparable disparity in mesh size. One of the problems of generating a
grid that requires a large variation in mesh size is that one needs some a priori knowledge
of the solution in order to place grid points where there will be high gradients. However,
one usually does not know a priori where regions of �ne resolution are needed, and for
the case of a time-dependent problem, there is the additional problem that regions where
�ne resolution is required can change position [14]. Lack of a priori knowledge can lead
to ine�cient placement of mesh points or, even worse, insu�cient resolution of the �ow
�eld if certain important �ow features are not captured because the mesh is too coarse in that
region. A solution adaptation approach tends to be more general as well as more practical than
trying to construct ad hoc meshes which require educated guesses as to where the enriched
or coarse parts of the mesh should be. For shocks propagating across a domain, for example,
the alternative to mesh adaptation would be a uniformly �ne mesh.
Solution adaptation can be achieved by three di�erent types of modi�cation: changing the

order of accuracy of the discretized approximation (p-re�nement), changing the number of
points by insertion and deletion (h-re�nement), and by rearranging the distribution of points
(r-re�nement). The last two types of modi�cation involve altering the mesh. Often more than
one type of re�nement will be used. The two main approaches of h-re�nement for unstructured
meshes of triangles in two dimensions or tetrahedra in three dimensions are by the insertion of
new points on the edges [14–20] and by insertion of new points by a Delaunay based method
[6, 21–24]. The former approach o�ers the advantage of being straightforward to implement.
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The latter approach is more �exible because it allows points to be inserted anywhere rather
than being constrained to insertion on an edge [25].
Many di�erent approaches for handling boundary movement have been proposed by numer-

ous authors [5, 6, 9, 24, 26–34]. The simplest approach is to regenerate the mesh, but this can
be quite expensive. Other methods open up pockets and remesh, but they are often limited in
their degree of robustness. Various methods have been proposed that maintain the connectivity
of the grid during mesh movement. The displacement vector between the points in the grid
at time t and time t+�t is de�ned as u=(u1; u2) where u1 = x′

1− x1, u2 = x′
2− x2 and (x1; x2)

are the coordinates of the point in the mesh at time t while (x′
1; x

′
2) are the corresponding

coordinates for its new location at time t +�t. The displacement on the boundary is known
but it is necessary to solve for the displacement in the interior. One approach that main-
tains the connectivity of the grid during mesh movement is to solve the Laplace equations
∇2u1 = 0 and ∇2u2 = 0 subject to the boundary conditions that u1 and u2 are speci�ed on the
boundary. Another approach is to use a tension spring analogy to allow the grid points to
react to boundary movement [9, 26, 27]. Here, the spring sti�ness for a given edge is inversely
proportional to a certain power of the edge length. A third approach is to model the domain
as an elastic solid and solve the equilibrium equations for the stress �eld [31, 32, 35, 36].
After extensive mesh movement (i.e. r-re�nement) the mesh will become so deformed that

any further mesh movement will cause some edges to cross-over leading to the formation of
inverted cells. At this point, one can regenerate the mesh in its entirety or remesh a pocket of
space that surrounds the badly distorted region. A valid retriangulation can always be generated
in the planar case but there is no such guarantee in 3D space, leading to the possibility that
a 3D implementation of a remeshing procedure could fail to work. Alternative treatments
based on overset meshes are popular for problems involving boundary displacement since
these methods can handle moving geometries with relative ease. Their accuracy, however, is
suspect since the solution variables must be interpolated across the overlap region to couple
the solutions in the di�erent overset meshes.
The approach adopted in this paper employs a mesh modi�cation algorithm based on coars-

ening the r-re�ned mesh to remove the cells that have become badly distorted and then
enriching the coarsened mesh to recover a new mesh that conforms with the displaced ge-
ometry and has a quality comparable to that of the original mesh. This dynamic adaptation
strategy [37] allows the distorted mesh to transition through a series of states until the �nal,
good quality mesh has been established. A particular advantage of our approach lies in the fact
that at every stage throughout the transition there is a valid, conforming and non-overlapping
mesh through the entire meshed domain. This leads to a highly robust algorithm for handling
moving boundary problems in both two and three dimensions.
The work described in this paper couples the fast and e�cient multigrid-driven implicit

method of Jameson [1] and the method of arti�cial compressibility of Chorin [10] with an
extension of the h-re�nement solution mesh adaptation and mesh movement approach for
moving boundaries of Baker [36]. This mesh adaptation approach uses a Delaunay based
coarsening and re�nement technique for �exibility and to maintain good grid quality. The
Vorono�� segment method of Rebay [38] is used for enrichment. The mesh movement algorithm
maintains the connectivity of the grid during mesh movement and models the domain as an
elastic solid by solving the equilibrium equations for the stress �eld to obtain the displacement
vector of the grid points. A decision on whether deletion or enrichment should occur is based
on how far the error indicator is above or below the mean. This procedure o�ers a �rst step
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towards a more automated way of deciding which points should be deleted or inserted rather
than requiring the user to supply the upper and lower thresholds for an error indicator or
detector.
One advantage of using a dual time stepping approach with mesh adaptation is that because

mesh adaptation occurs during each pseudo-transient calculation to determine the solution for
the next physical time step, there is no time lag between the adapted mesh and the �ow
solution in physical time.
To validate the �ow solver and the solution adaptation approach, and to demonstrate

how this method can be used to study wake �ows, numerical computations have been per-
formed for unsteady incompressible �ow around a cylinder for the Reynolds number range of
506Re6 175 and compared with both experimental results and other computational results.
Preliminary validation of the mesh movement method has been performed for two test cases.
The dynamic lift over an oscillating NACA 0012 airfoil in inviscid �ow is compared for the
case where a nondeforming grid is rigidly attached to the airfoil and the case where the grid
is allowed to deform as the airfoil oscillates. The second test case is a cylinder in a low
Reynolds number �ow (Re=100) that undergoes a forced oscillation along the direction of
the �ow. This case demonstrates the ability of the mesh movement and adaptation algorithm
to handle a moving body in conjunction with the �ow adaptation procedure that adapts to the
location of the vortices. Although the work described in this paper focuses on the computation
of incompressible �ows, these techniques are applicable to compressible �ows.

NUMERICAL DISCRETIZATION

The governing equations of concern are the time-dependent incompressible Navier–Stokes
equations in two dimensions. We will be considering laminar, constant viscosity �ow with-
out body forces. For a homogeneous incompressible �ow, density is constant and will be
nondimensionalized to unity.
The governing equations in integral form for an arbitrary mesh with arbitrary mesh velocity

(umesh; vmesh) are

d
dt

∫∫
�
z dx dy +

∮
@�
[(f − fv) dy − (g− gv) dx]= 0 (1)

where z is the vector

z=

⎛
⎜⎝
1

u1
u2

⎞
⎟⎠

and f and g are the Euler �ux vectors and fv and gv are the viscous �ux vectors

f =

⎛
⎜⎝

(u− umesh)
u(u− umesh) + p
v(u− umesh)

⎞
⎟⎠ ; g=

⎛
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u(v− vmesh)
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⎞
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� represents the control volume and @� represents the boundary of the control volume. The
dimensionless viscous stress tensor components are

�xx=
1
Re

(
2
@u
@x

)
; �xy= �yx=

1
Re

(
@u
@y
+
@v
@x

)
; �yy=

1
Re

(
2
@v
@y

)

where Re=U∞L=� is the Reynolds number, � is the kinematic viscosity, and U∞ and L are
the characteristic velocity and the length scales of the problem.
The governing equations are discretized by a �nite volume scheme on unstructured trian-

gular meshes. The �ow variables are stored at the nodes and the control volumes are the
nonoverlapping polygons that surround the nodes. The contour integrals of the convective and
viscous terms are computed using the trapezoidal rule. This approximation of the spatial term
can be shown to be equivalent to a Galerkin �nite-element discretization with linear elements
under certain conditions [9, 39, 40].
The �ow variables in the �rst integral of Equation (1), however, are assumed to be essen-

tially constant over each control volume and Equation (1) is now replaced by the semi-discrete
equation

d
dt
[zV ] +R(w)=0

where R(w) is the sum of the convective and viscous �uxes and the arti�cial dissipation. The
variable w is de�ned as the vector w=(p; u1; u2).
Let wn be the vector whose components are the values of w at each mesh point at time

t= n�t where �t is the physical time step. The solution for wn+1 is obtained by an implicit
solution of the equation

R∗(wn+1)≡ d
dt
[zn+1Vn+1] +R(wn+1)=0

In this work, d=dt is discretized using a second or third-order accurate backward di�erence
formula.
The method of arti�cial compressibility is employed to both convert the hyperbolic–elliptic

unsteady incompressible Navier–Stokes equations to a hyperbolic–parabolic system and to
reduce the disparity in the wave speeds of the system. The advantage of converting the
hyperbolic–elliptic system to a hyperbolic–parabolic system is that e�cient techniques for
solution of hyperbolic–parabolic systems can be used. The modi�ed residual R∗(w) (sum of
the actual residual and the discretization of the time derivative term) is multiplied by a local
preconditioning matrix and a pseudo-unsteady term is added to give

d
dt∗

[wV ] + Pr ·R∗(w)=0

where

Pr=

⎛
⎜⎜⎝
�2 0 0

0 1 0

0 0 1

⎞
⎟⎟⎠
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The pseudo-unsteady term is added so that advancement to the next physical time step can
be accomplished by solving a steady-state problem in pseudo-time t∗.
The coe�cient � is the arti�cial compressibility parameter, which has been chosen to depend

on the local speed and, in particular, the following form [41, 42] leads to an improvement in
the rate of convergence

�2 = max(0:25; u21 + u
2
2)

A modi�ed version [2] of Jameson’s [1] �ve-stage implicit multistage scheme is used to
integrate these equations until a steady state in pseudo-time has been reached. Various con-
vergence acceleration techniques can be used to speed up the convergence to steady state
in pseudo-time. The three used in this work are multigrid, local time stepping, and residual
averaging (details are provided in References [8, 43]). A more detailed account of the numer-
ical discretization can be found in References [39, 40].
The no-slip boundary condition is enforced at solid boundaries. Non-re�ecting far-�eld

boundary conditions based on a linearized characteristics approach are imposed at the outer
boundary of the domain. The formulation of these far-�eld boundary conditions is similar to
the version used by Belov [4].

MESH GENERATION AND MODIFICATION

Mesh generation

The initial mesh generation is based on a constrained Delaunay triangulation [23, 44]. The
goal is to obtain a smooth gradation in mesh generation throughout the domain such that
the density of the volume mesh near the boundary surface matches the mesh size of the
boundary triangulation [36]. The length density function � at each point is related to the
target circumradius of triangles in that region. Points are �rst placed on the boundaries in
a manner speci�ed by the user and then an initial triangulation of the volume is generated
without any interior points. The initial length density function for the boundary points is
calculated as an average length of the incident boundary edges. As interior points are added,
the length density function of the new point is based on an area weighting of the length
density function of the three vertices of the triangle that contains the new point. Points are
inserted if the actual circumradius is a certain threshold larger than the length density function.
Interior points are added by the Vorono�� segment method of Rebay [38]. Figure 1 gives an
example of an initial mesh generated around a circular cylinder.

Solution mesh adaptation

Central to any mesh adaptation scheme are two essential requirements, a means of recognizing
where extra �ow�eld resolution is needed for accuracy reasons or not needed for e�ciency
reasons and, secondly, a mechanism to alter the mesh in an appropriate manner [25].
As the goal of an adaptation scheme is to achieve error equidistribution at all the mesh

points, the �rst requirement will be ful�lled by using a suitable choice of ‘error indicator’.
The error indicator used in this work is the same as the numerator of the error indicator
used by L�ohner [14] and Liou [6]. The denominator of their error indicators is intended to
handle discontinuities, so it was not necessary for this work. Our error indicator is a second
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Figure 1. Unadapted grid.

derivative of an appropriate �ow quantity. The second derivative is calculated by a �nite
volume discretization that is very similar to that used to discretize the viscous �ux terms
[6, 39]. Before adaptation occurs, the value of the error indicator E is calculated at each
node.
Because the size of triangles is controlled by the length density function �, which represents

a target circumradius, we need a mechanism to modify �. Using a modi�ed version of the
method of Baker [36], the average error indicator for the entire mesh 	E is computed and the
the standard deviation � is calculated from �2 =E2 − ( 	E)2. Let

eup =
E − 	E − �up�

�

elow =
E − 	E + �low�

�

Then the new � at each mesh point becomes

�new =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�
1 + � min(eup; 1)

E¿ 	E + �up�

� 	E − �low�6E6 	E + �up�

� ∗ [1 + � min(|elow|; 1)] E¡ 	E − �low�
�up is the fraction of a standard deviation above the mean where the length density function
starts to be decreased (increasing the likelihood and amount of enrichment), �low is the fraction
of a standard deviation below the mean where the length density function starts to be increased
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(increasing the likelihood and amount of coarsening), and � controls how rapidly changes in
mesh density occur. A larger value of � will cause a larger change in mesh density. �up, �low,
and � are user supplied constants. If the ratio of a triangle’s circumradius to �new is above
a certain threshold, then the triangle is �agged for re�nement by Delaunay point insertion
with point placement determined by the Vorono�� segment method of Rebay [38]. If the ratio
of a triangle’s circumradius to �new falls below a certain threshold, then the triangle will be
deleted.
The mechanism to alter the mesh is based on a modi�ed version of the method of Baker

[36]. Triangles that are to be deleted are removed by collapsing their shortest edge. This
will actually delete two triangles. One could collapse an edge to its midpoint, to any of the
endpoints, or to any location along that edge. In practice, the edge is collapsed to its midpoint,
unless one of the endpoints is a boundary point. The shortest rather than the longest edge of
the triangle to be removed is collapsed because one is trying to increase the average edge
length locally.
After all the necessary triangles and relevant edges have been deleted, the quality of the

triangulation tends to be degraded. The �nal mesh quality will be improved if some smooth-
ing of the mesh is performed. This is done by swapping diagonals in order to maximize the
minimum of the angles of the pair of triangles with a common edge that form a convex
quadrilateral. Enrichment is accomplished by inserting a point according to the Vorono�� seg-
ment method and reconstructing the mesh by an incremental Delaunay algorithm. Enrichment
continues until the circumradius of each triangle reaches its ideal circumradius based on the
local length density function �.
The example mesh in the section on initial mesh generation (Figure 1) is used as the starting

point for a calculation of the incompressible �ow over a circular cylinder at a Reynolds number
of 150. Figure 2 shows the vorticity �eld for the entire domain with the mesh allowed to
adapt and Figure 3 shows the adapted grid for the entire domain once periodic shedding has
been established. The initial mesh had 2300 points while the adapted mesh for this example
typically had around 7000–7200 points.

Figure 2. ! �eld with adaptation.
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Figure 3. Adapted grid.

Mesh movement

Modi�cation of the mesh due to the movement of boundaries for time-dependent problems
follows the work of Baker [36]. This involves three stages: mesh movement, mesh coarsening,
and mesh enrichment. The mesh movement is done by an r-re�nement procedure. Mesh
coarsening based on an edge collapse is used to remove poor quality triangles after the
r-re�nement stage. Mesh enrichment based on comparing the ratio of circumradius to length
density function is used to form a mesh of comparable quality to the mesh before the boundary
movement.
After one time step �t the boundary of the domain is displaced to a new location. However,

the interior of the mesh needs to be modi�ed in a manner such that comparable mesh quality
to the mesh before the boundary movement is attained.
The displacement vector between the points in the grid at time t and time t+�t is de�ned

as u=(u1; u2) where u1 = x′
1−x1 and u2 = x′

2−x2. The coordinates (x1; x2) represent the point at
time t and the new location at time t+�t is represented by (x′

1; x
′
2). For a given displacement

on the boundary it is necessary to determine a suitable displacement in the interior.
Following the work of Baker [36], the equilibrium equations for the stress �eld will be

solved. The strain tensor can be written as

�ij=
1
2

(
@ui
@xj

+
@uj
@xi

)
; i; j=1; 2

and for an isotropically elastic solid, the stress tensor can be written as

�ij= ��kk	ij + 2
�ij; i; j=1; 2
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where � and 
 are the Lam
e constants. In the absence of a distributed body force, the stress
�eld satis�es the equation

@�ij
@xi

=0

It follows that only one user de�ned parameter, the ratio of the Lam
e constants, needs to be
speci�ed. If desired, one can instead specify a value for Poisson’s ratio,

�=
�

2(�+ 
)

from which the ratio of the Lam
e constants can be readily obtained.
The equation for the stress �eld is cast as a time marching problem to be iterated to steady

state. The spatial terms are discretized by a �nite volume method similar to the discretization
of the viscous �ux terms in the Navier–Stokes equation.
It is important to identify an appropriate set of triangles that needs to be removed during

the coarsening stage. Therefore, one needs to construct suitable mesh deformation and quality
measures to monitor the time evolution of the mesh. The mesh deformation and quality
measures of Baker [30, 36] were used in this work.
Enrichment is accomplished by inserting a point using the Vorono�� segment method and

performing an incremental Delaunay algorithm. Enrichment continues until the circumradius
of each triangle reaches its ideal circumradius (length density function �).
An example of one cycle of the mesh movement method for a pitching airfoil is shown in

Figures 4–7. For clarity, we will focus on the trailing edge of the airfoil. Figure 4 shows the
initial grid before the start of mesh movement. Figure 5 shows the grid after the trailing edge
of the airfoil has moved down and r-re�nement has taken place. The poor quality triangles
produced from the r-re�nement will be removed in the coarsening stage. Figure 6 shows the

Figure 4. Initial grid near trailing edge.
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Figure 5. Mesh after rotation of airfoil.

Figure 6. Coarsened mesh after rotation.

grid after the mesh coarsening and mesh smoothing operations have occurred. Figure 7 shows
the grid after the mesh enrichment operation has occurred to restore the mesh point density
around the trailing edge.

Generation of coarser meshes for multigrid

Mesh adaptation is performed on the �nest grid only. The coarser grids for multigrid are
then derived from the �nest grid using a coarsener. As a �rst attempt for a coarsener, a fast
simple coarsener that is based on initial triangulation techniques rather than edge collapsing
techniques is used.
The goal of the method is analogous to the generation of coarser meshes for a vertex-

based structured code in two dimensions. As in the structured mesh case, we want to roughly
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Figure 7. Complete cycle of movement and modi�cation.

double the spacing between each point on a �ne mesh in order to generate a coarser mesh.
The average edge length of all edges incident to each point is calculated. This gives a rough
distance measure to the neighbouring points. The coarser grid is generated �rst by removing
every other boundary point on the �ne grid and then an initial triangulation is produced.
Using a Bowyer algorithm [45], an attempt is made to insert each interior point of the
�ne grid. A comparison is made between the distance of the potential new point to the
closest existing coarse grid point and the average associated edge length of that existing
coarse grid point multiplied by a factor that is a little less than 2. If the former is greater
than the latter, then the potential new point becomes a coarse grid point, otherwise it is
rejected.
This coarsening strategy relies on pure geometric considerations to produce a coarse mesh.

An advantage is that it should produce a coarse mesh that closely resembles the �ne mesh.
Because the coarsener needs to be called each time after adaptation or mesh movement occurs
on the �nest mesh, the coarsener needs to be fast, otherwise this method will be ine�cient.
The key to the speed of the coarsener is a quadtree data structure [44].

Integration of mesh modi�cation with �ow solver

The details of the coupling of the �ow solver with mesh movement and solution adaptation is
as follows. The dual time stepping approach has an ‘outer time’ which advances forward one
time step in physical time and an ‘inner time’ which is the pseudo-time for the subiterations.
Iterating to steady state in pseudo-time advances forward one step in physical time. For the
case where one knows the location of the boundaries in advance as a function of time, the
mesh movement is called once every physical time step, before the pseudo-transient iteration.
After the boundary is moved to the new location, the three stage process of r-modi�cation,
mesh coarsening, and mesh re�nement occurs. Now as the pseudo-transient iteration proceeds,
solution adaptation is performed, either every multigrid cycle or after a certain number of
multigrid cycles [5, 6]. An example of this case is a NACA 0012 airfoil that is oscillating at
a �xed or prescribed frequency.
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For the case where the location of the boundary depends on the �ow solution in the interior,
one does not know a priori the location of the boundaries and the mesh movement algorithm
needs to be called as the pseudo-transient iteration proceeds in conjunction with solution
adaptation [5, 6]. An example of this case is a free surface �ow where the location of the
free surface depends on the solution of the bulk �ow.
After each cycle of mesh modi�cation, whether to adapt to the time evolving �ow solution

or to adapt to a relative displacement of boundary surfaces, it is necessary to project the
solution onto the new mesh points. Currently, the solution vector is interpolated from the pre-
vious mesh to the current mesh with a linear interpolation. From the results shown in the next
section, it is apparent that linear interpolation provided adequate accuracy for the problems
we have considered. It has been noted by de Sampaio et al. [46] that quadratic interpolation
does give much greater accuracy, which may be desirable in some situations. Our current
implementation for the solution interpolation is not strictly conservative, e.g. total momentum
is not conserved during mesh enrichment and mesh coarsening. This lack of conservation
could be addressed if the adaptation module and solution module were closely integrated so
that an interpolation that for example conserves total momentum could be done whenever a
given mesh point was removed from or added to the mesh. From the results presented in
this work, the lack of a strictly conservative treatment for the solution interpolation does not
appear to be critical. The time integration of the �ow equations is, of course, conservative
and provided a modi�ed interpolation that is conservative is used during an adaptation cycle,
there will be no spurious loss or gain of any conserved quantity. This contrasts favorably
with overset methods for which solution interpolation must be continually carried out as part
of the time integration of the �ow equations.

RESULTS AND DISCUSSION

Validation was performed with three test cases: a stationary circular cylinder in a low Reynolds
number �ow, an oscillating airfoil with mesh deformation in inviscid �ow, and an oscillating
cylinder with mesh deformation in a low Reynolds number �ow. The �rst test case demon-
strates the solution mesh adaptation approach without mesh movement. The second test case
demonstrates the mesh movement approach without solution mesh adaptation. The �nal test
case demonstrates both solution mesh adaptation and mesh movement.
One of the benchmark test cases for any unsteady incompressible laminar Navier–Stokes

algorithm is �ow over a circular cylinder due to the amount of experimental [47–49] and
computational [4, 50] data available. Experiments conducted by Williamson [47], indicate that
the �ow around a circular cylinder does not become unsteady until a critical Reynolds num-
ber of about Rec = 49. Spanwise independent parallel shedding is observed in the approxi-
mate range of 49¡Re¡180, above which three-dimensional shedding modes are observed.
This makes the range 49¡Re¡180 useful for validating two-dimensional unsteady
algorithms. Williamson [47] proposed a relation for Strouhal frequency, St(Re), of the form
St(Re)= (A=Re) + B + C ·Re where A, B, and C are constants (A=−3:3265, B=0:1816,
C=1:600× 10−4). This relationship �ts Williamson’s experimental data to within about
2% [48].
Computations were performed using an initial grid that contains twice the number of body

points as shown in the example grid when describing the initial mesh generation. 256 points
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were equally spaced around the cylinder and 64 points were equally spaced around the far
�eld outer boundary. The total number of mesh points for the initial grid was 3200. Once
periodic shedding was reached, the total number of mesh points was 9900–10 200 for the
Re=50 case and 14 200–15 200 for the Re=175 case, with the other cases being somewhere
in between. The third order backward time discretization was used, with 48 time steps per
shedding cycle.
Figure 8 shows the comparison between these computational results and the experimen-

tal data. The computational results of Henderson [50] and Belov [4] are also included for
comparison. Strouhal frequency is plotted on the vertical axis with Reynolds number, Re,
on the horizontal axis. The solid line is the best �t of the experimental data to the relation
St(Re)= (A=Re) +B+C ·Re. The computed Strouhal number is within 2% of the above best
�t to the experimental data, and the computed St di�ers by 1% or less for the Re between
60 and 150. The computational results agree well with the experimental results.
Williamson and Roshko [49] also proposed a relationship of the same form but with di�er-

ent coe�cients for the variation of base pressure coe�cient Cpb(Re) with Reynolds number
(A=−14:3500, B=0:6950, C=16:920). The base pressure coe�cient is calculated from the
time-averaged value of the pressure at the point 180◦ from the forward stagnation point. These
coe�cients were obtained from the work of Henderson [50]. Figure 9 shows the compari-
son between the above best �t to the experimental data and the computational results. Once
again, the computational results of Henderson [50] and Belov [4] are also included for com-
parison. Base pressure coe�cient is plotted on the vertical axis with Reynolds number, Re,
on the horizontal axis. The solid line is the best �t of the experimental data to the relation
St(Re)= (A=Re) + B+ C ·Re. Our computed base pressure is within 5% of the best �t curve
to the experimental data and is consistently lower.
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Figure 8. St(Re) for cylinder 49¡Re¡180.
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For the second test case, the incompressible Euler equations rather than the incompress-
ible laminar Navier–Stokes equations were solved. The test case is a NACA 0012 airfoil
undergoing a forced oscillation at a reduced frequency of 0.400 for angles of attack between
−6:7◦ and 6:7◦ about a mean angle of attack of zero. The reduced frequency is de�ned as
!r = c!=2U where ! is the frequency of oscillation, c is the chord of the airfoil, and U is
the characteristic velocity (freestream velocity for our case). The airfoil is pitched about a
point that is 0.37 chords downstream of the leading edge.
Two computations were performed for this test case. The �rst computation treats the entire

grid as a rigid body that is �xed to the airfoil and pitches with the airfoil. The computational
mesh has 128 points on the body of the airfoil and 64 points on the far �eld boundary. The
total number of grid points is roughly 3000. The third-order backward discretization of the
time derivative term with 48 time steps per oscillation cycle was used. The second computation
has the outer boundary of the grid �xed and allows the interior of the mesh to deform as the
airfoil pitches. The mesh movement procedure was used to allow the mesh to deform as the
airfoil pitched. The initial mesh is the same mesh as used in the nondeforming mesh case.
As in the previous case, the third-order backward discretization of the time derivative term
with 48 time steps per oscillation cycle was used.
Figure 10 shows a comparison of the computed lift coe�cient (Cl) vs angle of attack (�)

for the two computed results with the experimental results of Halfman [51]. The experimental
Reynolds number of 106 and Mach number of 0.1 are high and low enough, respectively, to
justify comparison with a numerical solution of the incompressible Euler equations. Note that
the values for lift coe�cient for the deforming mesh (solid circles) and the rigid mesh (hollow
squares) show good agreement, and they both agree well with the experimental results. The
purpose of this test case is to demonstrate that the mesh deformation approach gives reasonable
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Figure 10. Comparison of Cl between rigid mesh, deforming mesh, and experiment.

results and would be appropriate for situations with multiple bodies in relative motion. An
example of this situation is a multi-element airfoil with �aps and slats that are being deployed.
As a �rst demonstration of the ability of the method to handle problems with both time

varying boundaries as well as �ow solution adaptation, we consider the test case calculated
by Mittal and Tezduyar [33]. They considered a circular cylinder at Reynolds number of 100
that is forced to oscillate horizontally. The forced horizontal oscillation test case is interesting
because in contrast to �ow past a stationary cylinder at Re=100 which leads to classical
unsymmetrical vortex shedding, if the frequency of the forcing is high enough, symmetric
vortex shedding is observed [52]. The prescribed displacement of the cylinder (nondimension-
alized by cylinder diameter) is x(t)=0:5(1 − cos !t). The reduced frequency of oscillation
!r =0:35, where reduced frequency is de�ned as !r =(1=2�)(!D=U ), D and U are the diam-
eter of the cylinder and characteristic velocity of the �ow respectively. The initial condition
is the periodic �ow past a �xed cylinder at Re=100.
We �rst calculated �ow past a �xed cylinder at Re=100 to obtain the periodic solution,

then at time t=119:2, started the forced oscillation of the cylinder. The initial grid had a far
�eld 16.7 cylinder diameters from the centre of the cylinder, with 128 points on the surface
of the cylinder and 64 points on the outer boundary. The total number of points in the initial
grid was about 2300. The third-order backward di�erence discretization in time was used,
with 48 time steps per period of forced oscillation. In contrast to Re=100 �ow past a �xed
cylinder which has a lift coe�cient with an amplitude of about 0.3 and a drag coe�cient of
about 1.3, the lift coe�cient for the forced oscillation case is decaying to zero and the drag
coe�cient has a far larger amplitude. The calculated drag coe�cient oscillates with a reduced
frequency of 0.35. Our drag coe�cient which is approximately between [−2:6; 5:8] is similar
to Mittal and Tezduyar’s drag coe�cient which was approximately between [−3:1; 6:3].
Figure 11 shows a sequence of frames over one period of oscillation. The left column shows

the vorticity �eld and the right column shows the corresponding grid. Each row represents
1
4 of a period later. The �rst row is for a time when the cylinder is located at the mean
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Figure 11. Sequence of frames over one period of oscillation. (a) ! �eld and adapted grid; (b) ! �eld
and adapted grid, 1

4 period later; (c) ! �eld and adapted grid, 1
2 period later; and (d) ! �eld and

adapted grid, 34 period later.
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cylinder location, centre at x=0:5. The second, third, and fourth rows show the location of
the cylinder when its centre is at locations x=0, x=0:5, and x=1, respectively. The number
of grid points over this period varies between 7500 and 8800. Note that during each period of
forced oscillation, two symmetrical pairs of vortices are shed from the cylinder. The pair of
vortices that are shed when the cylinder moves in the opposite direction to the �ow is stronger
than the pair of vortices that are shed when the cylinder moves in the same direction as the
�ow.
The viscous computations considered in this paper are for �ow�elds where the Reynolds

number is su�ciently small that the �ow �eld is laminar. For this regime it is su�cient to
consider a mesh composed of isotropic cells (i.e. cells whose aspect ratio is small). For higher
Reynolds number �ows, use of isotropic cells leads to a very large number of cells. Although
this does not cause any di�culty to the mesh adaptation approach or the �ow solver, the
CPU time required could render the calculation impractical. For this approach to be practical
for engineering simulations on current computers, it would be necessary to introduce an
anisotropic mesh with high aspect ratio cells in boundary layers and wake regions. Although
the example problems used in this work have fairly simple shapes, these examples were
chosen in order to make comparisons with experimental data and with other computations.
The dynamic adaptation scheme presented in the paper should apply equally well to any shape
no matter how complex.
With the exception of generating the sequence of coarser grids for multigrid by use of an

initial triangulation technique, the mesh movement and modi�cation strategy does generalize
to 3D. For the 3D case, the sequence of coarser grids for multigrid would be generated by
coarsening the �ne mesh through edge collapse techniques. A description of the 3D imple-
mentation can be found in Reference [37]. It would therefore be possible to extend this work
to 3D by coupling the mesh adaptation routines with a 3D Navier–Stokes �ow solver.

CONCLUSION

An implicit multigrid-driven algorithm for two-dimensional incompressible laminar viscous
�ows is coupled with a solution adaptation method to improve the resolution of the �ow
�eld and a mesh movement method to handle time dependent boundaries. Validation of the
method with unsteady periodic shedding of a circular cylinder in the Reynolds number range
of 49¡Re¡180 shows that the mesh adaptation method is able to track the vortices as they
convect downstream and out of the domain and that the Strouhal frequency and base pressure
coe�cient agree with experimental results and other computational results. Preliminary vali-
dation of the time dependent boundary movement method was performed by comparison with
experimental results of an oscillating airfoil and calculated results for an oscillating cylinder.
These results strengthen one’s con�dence that this method shows promise for studying more
complex con�gurations.
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